New to Gradio? Start here: Getting Started
See the Release History
gradio.AnnotatedImage(···)
Description

Displays a base image and colored subsections on top of that image. Subsections can take the from of rectangles (e.g. object detection) or masks (e.g. image segmentation).
Behavior

As input: this component does not accept input.
As output: expects a Tuple[numpy.ndarray | PIL.Image | str, List[Tuple[numpy.ndarray | Tuple[int, int, int, int], str]]]
consisting of a base image and a list of subsections, that are either (x1, y1, x2, y2) tuples identifying object boundaries, or 0-1 confidence masks of the same shape as the image. A label is provided for each subsection.
Initialization

Parameter | Description |
---|---|
value tuple[np.ndarray | _Image.Image | str, list[tuple[np.ndarray | tuple[int, int, int, int], str]]] | None default: None | Tuple of base image and list of (subsection, label) pairs. |
show_legend bool default: True | If True, will show a legend of the subsections. |
height int | str | None default: None | The height of the image, specified in pixels if a number is passed, or in CSS units if a string is passed. |
width int | str | None default: None | The width of the image, specified in pixels if a number is passed, or in CSS units if a string is passed. |
color_map dict[str, str] | None default: None | A dictionary mapping labels to colors. The colors must be specified as hex codes. |
label str | None default: None | The label for this component. Appears above the component and is also used as the header if there are a table of examples for this component. If None and used in a |
every float | None default: None | If |
show_label bool | None default: None | if True, will display label. |
container bool default: True | If True, will place the component in a container - providing some extra padding around the border. |
scale int | None default: None | relative width compared to adjacent Components in a Row. For example, if Component A has scale=2, and Component B has scale=1, A will be twice as wide as B. Should be an integer. |
min_width int default: 160 | minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first. |
visible bool default: True | If False, component will be hidden. |
elem_id str | None default: None | An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles. |
elem_classes list[str] | str | None default: None | An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles. |
render bool default: True | If False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later. |
Shortcuts

Class | Interface String Shortcut | Initialization |
---|---|---|
| "annotatedimage" | Uses default values |
Demos

import gradio as gr
import numpy as np
import random
with gr.Blocks() as demo:
section_labels = [
"apple",
"banana",
"carrot",
"donut",
"eggplant",
"fish",
"grapes",
"hamburger",
"ice cream",
"juice",
]
with gr.Row():
num_boxes = gr.Slider(0, 5, 2, step=1, label="Number of boxes")
num_segments = gr.Slider(0, 5, 1, step=1, label="Number of segments")
with gr.Row():
img_input = gr.Image()
img_output = gr.AnnotatedImage(
color_map={"banana": "#a89a00", "carrot": "#ffae00"}
)
section_btn = gr.Button("Identify Sections")
selected_section = gr.Textbox(label="Selected Section")
def section(img, num_boxes, num_segments):
sections = []
for a in range(num_boxes):
x = random.randint(0, img.shape[1])
y = random.randint(0, img.shape[0])
w = random.randint(0, img.shape[1] - x)
h = random.randint(0, img.shape[0] - y)
sections.append(((x, y, x + w, y + h), section_labels[a]))
for b in range(num_segments):
x = random.randint(0, img.shape[1])
y = random.randint(0, img.shape[0])
r = random.randint(0, min(x, y, img.shape[1] - x, img.shape[0] - y))
mask = np.zeros(img.shape[:2])
for i in range(img.shape[0]):
for j in range(img.shape[1]):
dist_square = (i - y) ** 2 + (j - x) ** 2
if dist_square < r**2:
mask[i, j] = round((r**2 - dist_square) / r**2 * 4) / 4
sections.append((mask, section_labels[b + num_boxes]))
return (img, sections)
section_btn.click(section, [img_input, num_boxes, num_segments], img_output)
def select_section(evt: gr.SelectData):
return section_labels[evt.index]
img_output.select(select_section, None, selected_section)
if __name__ == "__main__":
demo.launch()
Event Listeners

Description
Event listeners allow you to capture and respond to user interactions with the UI components you've defined in a Gradio Blocks app. When a user interacts with an element, such as changing a slider value or uploading an image, a function is called.
Supported Event Listeners
The AnnotatedImage component supports the following event listeners. Each event listener takes the same parameters, which are listed in the Event Arguments table below.
Listener | Description |
---|---|
| Event listener for when the user selects or deselects the AnnotatedImage. Uses event data gradio.SelectData to carry |
Event Arguments
Parameter | Description |
---|---|
fn Callable | None | Literal['decorator'] default: "decorator" | the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component. |
inputs Component | list[Component] | set[Component] | None default: None | List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list. |
outputs Component | list[Component] | None default: None | List of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list. |
api_name str | None | Literal[False] default: None | defines how the endpoint appears in the API docs. Can be a string, None, or False. If set to a string, the endpoint will be exposed in the API docs with the given name. If None (default), the name of the function will be used as the API endpoint. If False, the endpoint will not be exposed in the API docs and downstream apps (including those that |
scroll_to_output bool default: False | If True, will scroll to output component on completion |
show_progress Literal[('full', 'minimal', 'hidden')] default: "full" | If True, will show progress animation while pending |
queue bool | None default: None | If True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app. |
batch bool default: False | If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length |
max_batch_size int default: 4 | Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True) |
preprocess bool default: True | If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the |
postprocess bool default: True | If False, will not run postprocessing of component data before returning 'fn' output to the browser. |
cancels dict[str, Any] | list[dict[str, Any]] | None default: None | A list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish. |
every float | None default: None | Run this event 'every' number of seconds while the client connection is open. Interpreted in seconds. Queue must be enabled. |
trigger_mode Literal[('once', 'multiple', 'always_last')] | None default: None | If "once" (default for all events except |
js str | None default: None | Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components. |
concurrency_limit int | None | Literal['default'] default: "default" | If set, this this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the |
concurrency_id str | None default: None | If set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit. |